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We study the evolution of rotational response of a statistical mechanical model of two-component superfluid
with a nondissipative drag interaction as the system undergoes a transition into a paired superfluid phase at
finite temperature. The transition manifests itself in a change of �i� vortex-lattice symmetry and �ii� nature of
the vortex state. Instead of a vortex lattice, the system forms a highly disordered tangle which constantly
undergoes merger and reconnecting processes involving different types of vortices with a “hidden” breakdown
of translation symmetry.
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I. INTRODUCTION

Recently, there has been increased interest in so-called
“paired” states of superfluids �and also related counter-flow
states� where pairing results from proliferation of composite
topological defects in various physical contexts.1–6 The
mechanism can be outlined as follows. In certain systems,
the energetically cheapest defects that proliferate under the
influence of thermal fluctuations or applied external field are
not the simplest vortex loops, rather, they are composite
ones. That is, they have phase winding in several compo-
nents of the order parameter, but nonetheless they lack topo-
logical charge in some sector of the model. Consequently,
their proliferation does not restore symmetry completely.
Broken symmetry may remain in, e.g., the sum of the phases
of the order-parameter components, and the resulting state is
frequently called a paired superfluid. Since the origin of pair-
ing in this case is an entropy-driven formation of a tangle of
composite topological defects, one encounters an unusual
situation in which a system forms paired states as a conse-
quence of heating. Thus, in what follows we will refer to this
state as a thermally paired superfluid �TPS� to distinguish it
from a conventional pairing mechanism.

Today, the experimentally most feasible system, within
which to study TPS, appears to be multicomponent Bose-
Einstein condensates. Here, TPS can arise2,6 due to a current-
current �Andreev-Bashkin7� interaction, which can be tuned
in an especially wide range for bosons in optical lattices.4

Questions therefore arise as to how the transition into a TPS
alters the rotational response of the system and what are its

experimental signatures. In this paper, we address this by
studying a model of a mixture of two superfluids with a
dissipationless drag in the London approximation, i.e., den-
sity fluctuations of the superfluid condensate components are
neglected.

II. MODEL

The model is given by6,7
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where �i, ni, and mi are the phases, densities, and masses of
the condensates, respectively, the angular frequency is given
by �=���, while nd controls the density of one compo-
nent dragged by the other. The central feature of the model is
that for significantly strong drag nd the composite vortices
with phase winding in both components ���1=2� ,��2=
−2�� 	in what follows denoted by �1,−1�
 become the ener-
getically cheapest to excite and are the easiest objects of a
thermal fluctuation-driven proliferation.2,4,6 The resulting
phase is well described by separating out the sector of the
model unaffected by proliferation of composite vortices.
Without rotation, the accuracy of this procedure was numeri-
cally checked in various regimes in Ref. 6. The Hamiltonian
reads, after separation of variables,
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where the first term represents the part of the model unaf-
fected by proliferation of �1,−1� vortices. In what follows,
we consider the case m1=m2=1 and n1=n2=� and nd=�d in
units where �=1, namely,

F =
�

4
	���1 + �2� − 2�
2 +

� − 2�d

4
	���1 − �2�
2. �3�

In the absence of rotation, the model 	Eq. �3�
 has three
different phases. �i� At low drag and low temperature, there
is a phase with broken U�1��U�1� symmetry. �ii� At high
temperatures there is a fully symmetric phase. �iii� At �d
	0, there is a phase with broken U�1� symmetry only in the
phase sum: This is the TPS. The phase diagram was studied
in the J-current representation in Ref, 2 and, in terms of
proliferation of vortex loops in the Villain model, in Ref. 6.

In this work, we address the question of the physics of
this system when it is subjected to rotation. To this end, we
have performed large scale Monte Carlo �MC� computations
on Eq. �3� following the procedures of Ref. 6. Rotation is
accounted for by choosing �= �0,2�fx ,0�, where f is the
number of rotation-induced vortices per plaquette in the xy
plane. Our free energy is a function of the ratios of stiff-
nesses to temperature. Thus, we explore the phase diagram in
terms of these dimensionless ratios, i.e., by absorbing the
temperature in � and �d. Thus, low values of � and �d
amount to high temperatures and vice versa. In these stan-
dard units and in the discretization scheme using the Villain
approximation,
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where HV=�i,
Vi,
. In Eq. �4�, the fields ni,

�1� and ni,


�2� are
integer-valued auxiliary fields that are summed over in the
partition function, such that the action is 2� periodic in the
phase fields �1,i and �2,i and �
 denotes a lattice derivative in
the 
 direction. The single-component XY model in the Vil-
lain approximation has a critical stiffness �c�0.33.8 We
have considered cubic numerical grids, with periodic bound-
ary conditions, of size L3 with L=64 and 128. Throughout,
we have a filling fraction f =1 /64. For each coupling we
have used 5�105 sweeps over the entire grid for thermali-
zation and then used 1�106 sweeps for calculating averages.

In the limit �d→0, the system tends toward two decou-
pled superfluids for which our simulations recover the stan-
dard triangular vortex-lattice forming in response to rotation.
Already for a drag �d as low as �d�0.08, the energetically
most favorable vortex ordering becomes square vortex lat-
tices for each of the components. These lattices are shifted
with respect to each other half a lattice spacing in the x and
y directions. This effect, arising in this hydrodynamic model
with current-current interactions, has a counterpart in a sys-
tem with a different type of interaction. Namely, square lat-
tices are also known to appear in two-component conden-

sates with density-density interaction.9 Below, we study
vortex matter with further increased drag and temperature by
�i� inspection of three-dimensional �3D� snapshots of typical
vortex configuration, �ii� calculating structure factors, and
�iii� by calculating the quantity �̃i�r�� representing real-space
averages over various numbers of MC sweeps of the vortic-
ity integrated along the z direction defined as

�̃i�r�� =� 1

Lz
�

z

�z
i�r�,z�� , �5�

where �z
i�r� ,z� is the vorticity of component i along the z

direction at r= �x ,y ,z� and r�= �x ,y�, �·� denotes MC aver-
aging. It is important to note that when �̃i�r�� shows a lattice
ordering, although it signals a particular rotational response,
it does not necessarily imply a vortex state visible in z-axis
density averages. This is so because the MC and z axis av-
erages in �̃i�r�� are taken over vorticity but not over a den-
sity. Vortex segments with opposite phase windings cancel
each others vorticity in these averages.

In the low-drag low-temperature regime the quantity
�̃i�r�� show peaks corresponding to a square lattice. At stron-
ger drag, there appear weak intensity peaks in the center of
the plaquettes for each of the components; cf. Fig. 1. This
means that an increased drag and temperature creates a fluc-
tuating vortex background such that there is an increased
probability to find a segment of a vortex directed along the z
direction and situated in the center of plaquettes of the
square vortex lattice 	Fig. 1
. In addition, the higher-order
Bragg peaks disappear from the k-space structure factor

S�i��k�� = � 1

LxLyLzf
�
r�,z

�z
i�r�,z�e−ir�k��2

. �6�

With increasing temperature, equivalently decreasing �,
the intensity of new peaks in the quantity �̃i�r�� grows at
sufficiently large �d. Eventually, we observe a discontinuous

FIG. 1. �Color online� The average vortex positions in xy plane
integrated along the z direction and averaged over every 100th of a
total of 1�106 MC sweeps 	�̃1�r��
. Here �=0.924 and �d=0.17 in
�a� and �d=0.37 in �b�. The brighter green color shows higher prob-
ability to find a vortex segment directed along the rotation axis. The
left part of each panel shows vortices with phase winding in com-
ponent 1 �̃1�r��, while the right part is that for the component 2
�̃2�r��. The lattices of the two components are displaced a half
period in both directions. The inset shows the corresponding
k-space structure factor.
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phase transition to a state with domains where the secondary
real-space vortex position peaks have intensities equal to the
primary peaks. In these domains, the lattice symmetry also
changes from square to triangular, and the real-space position
averages for each component become identical, i.e., �̃1�r��
� �̃2�r��. These triangular lattice domains coexist with do-
mains of square high-intensity lattices with a weaker inten-
sity square sublattice, where �̃1�r�� is approximately the
same as �̃2�r��, but shifted a half-lattice spacing in x and y
directions. This is seen by comparing panels �a� and �b� in
Fig. 2.

With further increase in temperature, the triangular lattice
domains grow until �̃1�r�� and �̃2�r�� form identical essen-
tially perfect triangular lattices which precisely coincide in
space; cf. panels �c� of Fig. 3. Note also that now �̃i�r�� has
twice as high number of vortex positions as the low-drag
low-temperature case.

Figure 2 also shows snapshots of typical vortex configu-
rations arising in these states. Even in the state with U�1�
�U�1� symmetry and square lattice with relatively weak
sublattice intensity peaks in �̃i�r��, it is not obvious from a
typical snapshot that the system features a vortex lattice

FIG. 2. �Color online� The upper row shows the xy position of component 1 vortices integrated along the z direction, �̃1�r��, averaged
over every 100th of a total of 1.0�106 MC sweeps. �a� �=0.984, �b� �=0.982, �c� �=0.980, and �d=0.4 in all panels. The inset shows the
corresponding k-space structure factor S1�k��. The bottom row shows typical 3D snapshots of the vortex configuration of a 16�16�16
segment of the simulated system. The green and yellow colors represent vortices in different components. The figure shows the transition
from a square lattice structure �leftmost column� to a triangular lattice structure �rightmost column�. The middle column shows coexistence
of a triangular and square lattice. The square lattice is seen in the left top and bottom corner of the panel �b�; it is also possible to see a square
structure inside the hexagonal structure in the k-space inset. For visualizing the 3D snapshots, the vortex diameter is chosen to be 0.1 of the
numerical grid spacing. Sharp bends arising at the scales of numerical grid spacing are smoothed by spline interpolation. For animations, see
Ref. 10.

FIG. 3. �Color online� Panel �a� is a typical snapshot of �̃1�r�� with the corresponding k-space structure factor as inset, while panel �b�
is the corresponding quantity averaged over five different configurations �100 MC sweeps are used to obtain a new configuration� while in
panel �c� the quantity is averaged over 1000 different configurations. We see that one needs to average over several configurations before a
triangular lattice is clearly visible in �̃i. The computations were done for �=0.98 and �d=0.4.
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which breaks translational symmetry. Moreover, it is impos-
sible to see vortex lattices in any snapshots corresponding to
the case when statistical averaging produces nearly perfect
triangular lattice. Thus, we will use the term “hidden vortex
lattice” �HVL� for this case. In Fig. 3, we show �̃i�r�� aver-
aged over a different number of MC snapshots. In the case of
triangular HVL, in contrast to the low-drag low-temperature
case, averaging over a small number of MC snapshots shows
no vortex lattice in real-space images. As seen from 3D snap-
shots, the effect should be stronger for density averages, i.e.,
averages performed over vortex-core positions instead of
vorticity average of z-axis directed vortex and antivortex
segments, represented by �̃i�r��.

The evolution of vortex matter with increasing tempera-
ture at significantly strong drag can be described as follows.
Topologically, the increase in drag makes composite defects
�1,−1� with energy ��−2�d the easiest objects to proliferate.
The thermally generated composite �1,−1� vortex loops inter-
act with the rotation-induced lattice through processes sche-
matically illustrated in Fig. 4. For instance, a rotation-
induced �0,1� vortex line can absorb a segment of a thermally
created �1,−1� vortex loop. This changes the “color” of a
segment of the rotation-induced line. Subtracting all counter-
flow segments 	i.e., co-centered counter-directed vortices
�1,−1�
, which are not directly relevant to rotational re-
sponse, shows that this process leads to a rotation-induced
vortex lattice where the vortex lines comprising the lattice
will have randomly alternating and thermally fluctuating col-
ors. Indeed, when the number of thermally induced �1,−1�
loops is low, each sublattice at any moment acquires only a
small number of segments of vortices of another color via
rare merger processes with thermally excited composite vor-
tices. This is the origin of the weak sublattice intensity peaks
appearing in the centers of each plaquette discussed above.
At sufficiently strong drag the system should undergo a tran-
sition to the TPS via proliferation of �1,−1� vortices. In the
TPS, the remaining broken U�1� symmetry in the phase sum
still allows the system to form rotation-induced lattices of
individual vortices, but the individual vortices �1,0� and �0,1�
will constantly absorb and emit �1,−1� vortex loops. Thus,

one cannot attribute a specific color to them. In this state the
system only has one type of color-indefinite topological de-
fect, and the spatially and MC-averaged images �̃i�r�� dis-
play a triangular lattice. Even though the averaged real-space
images show a doubled number of vortices as seen in Fig. 3,
Fig. 4 illustrates that in our simulations the total number of z
components of the elementary segments of rotation-induced
vortices does not change. In snapshots, every rotation-
induced vortex line on average consists of 50% green seg-
ments and 50% yellow segments. Overall, the system in this
state is in a disordered vortex tangle state which is continu-
ously undergoing merger processes between composite and
individual vortices. The breakdown of spatial symmetry tran-
spires only after spatial and MC averaging.

We now discuss quantitatively the influence of rotation
for a given vortex density, on the phase diagram of the sys-
tem. Figure 5 shows the phase diagrams of the model in the
Villain approximation, both without rotation6 and with rota-
tion. In the zero-drag limit the broken-symmetry domain
shrinks most significantly since under rotation the symmetry
is now restored by lattice melting rather than vortex-loop
proliferation. On the other hand, in the strong-drag limit an
opposite situation arises. Namely, the transition from U�1�
�U�1� to U�1� TPS state is governed by composite vortices
and for strong enough drag, the transition is almost unaf-
fected by rotation-induced lattice of individual vortices.
However, the transition from TPS to a fully symmetric state
is strongly affected by rotation because it is dominated by
vortex-lattice melting rather than vortex-loop proliferation.
Note also that the stiffness at this transition is independent of
�d and is exactly twice the critical stiffness of the phase
transition in the zero-drag limit. This demonstrates the accu-
racy of the separation of variables argument in Ref. 6 in case
of a rotating system.

III. CONCLUSIONS

In conclusion, we have studied the rotational response of
two superfluids with current-current �drag� interaction. At
very low temperatures, the drag effect results in the forma-
tion of vortex lattices with square symmetry in response to
rotation. At moderate temperatures, there appears a statistical

FIG. 4. �Color online� Left panel illustrates how a segment of a
rotation-induced vortex line effectively can change color via merger
with a thermally excited composite �1,−1� vortex loop. The process
is responsible for, e.g., the appearance of sublattice peaks in �̃i�r��.
Right panel shows that when the system undergoes a transition from
square to triangular vortex lattice, the helicity modulus for the ��1

−�2� sector − goes to zero, while the helicity modulus for com-
ponent 1 1 stays finite �left axis�. Also, it is seen that in spite of
vortex number doubling in the quantity �̃i�r��, the number of
z-directed rotation-induced vortex segments is constant �right axis:
blue crosses�. N is the number density of z-directed vortices.

ρc

ρ/ρm

ρd

m1 = m2 = m
ρ1 = ρ2 = ρ

2.521.510.50

0.4

0.2

0

FIG. 5. �Color online� Phase diagram of the model 	Eq. �1�

with and without rotation. Dotted lines and blue crosses are ob-
tained from the analytical estimates and numerical results from Ref.
6. Black crosses are obtained in the current case of rotating system
from the vanishing of the peaks of structure function at primary
reciprocal-lattice vectors of the rotation-induced vortex lattice,
which signals symmetry restoration.

DAHL, BABAEV, AND SUDBØ PHYSICAL REVIEW B 78, 144510 �2008�

144510-4



vorticity buildup in the form of a weak square sublattice.
With further elevation of the temperature the system under-
goes a transition to a TPS which we find is accompanied by
a melting of the square lattice into a triangular one. The new
triangular lattice breaks translation symmetry in a statistical
sense. Snapshots of this state reveal a highly entangled vor-
tex state. We stress that the quantities which we use, namely,
�̃i�r�� and Si�k�, measure averaged vorticity and do not nec-
essarily imply detectable breakdown of translation symmetry
in density measurements. This might have experimental im-
plications. There might be regimes where density snapshots
may not display vortex lattices in the TPS even though the
system may have perfectly triangular HVL from the point of
view of the above quantities which measure averaged vortic-
ity. It might, however, be possible in principle to detect HVL
in interference experiments. Furthermore, in a certain sense a
counterpart of some of the phenomena discussed above may
be visible in the density profile of quasi-two-dimensional
�2D� systems. There, in the regime of strong drag, the com-

posite �1,−1� vortices undergo a Berezinskii-Kosterlitz-
Thouless transition at �� /2−�d�=� /4 while the system re-
tains the order in the phase sum for � /2	� /2. Under
rotation, they can be expected to display a vortex lattice of
individual vortices coexisting with a liquid state of thermally
excited composite vortices and antivortices. Finally, we re-
mark that the previous studies of the effect of a presence of a
trap on thermally fluctuating vortices in single-component
hydrodynamic model11 suggest that a density variation in a
trapped two-component condensate may produce a situation
where several of the above states may be simultaneously
present at different distances from the center of the trap.
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